Lladò-Pelfort L, Assié MB, Newman-Tancredi A, Artigas F, Celada P.
Psychopharmacology (Berl). 2012 May;221(2):261-72. Epub 2011 Dec 3.

RATIONALE: F13640 (befiradol) is a novel 5-HT1A receptor agonist with exceptional selectivity vs. other receptors and binding sites. It shows analgesic activity in animal models and is currently developed for human use.

OBJECTIVES: Given the potential dual role of the serotonergic system in pain, through the modulation of ascending signals in spinal cord and their emotional processing by corticolimbic areas, we examined the in vivo activity of F13640 at somatodendritic autoreceptors and postsynaptic 5-HT1A heteroreceptors in medial prefrontal cortex (mPFC).

METHODS: In vivo single unit recordings and intracerebral microdialysis in the rat.

RESULTS: F13640 reduced the activity of dorsal raphe serotonergic neurons at 0.2-18.2 µg/kg, i.v. (cumulative doses; ED50=0.69 µg/kg, i.v.) and increased the discharge rate of 80% of mPFC pyramidal neurons in the same dose range (ED50=0.62 µg/kg, i.v.). Both effects were reversed by the subsequent administration of the 5-HT1A receptor antagonist (±)WAY100635. In microdialysis studies, F13640 (0.04-0.63 mg/kg, i.p.) dose-dependently decreased extracellular 5-HT in the hippocampus and mPFC. Likewise, F13640 (0.01-2.5 mg/kg, i.p.) dose-dependently increased extracellular DA in mPFC, an effect dependent on the activation of postsynaptic 5-HT1A receptors in mPFC. Local perfusion of F13640 in mPFC (1-1,000 µM) also increased extracellular DA in a concentration-dependent manner. Both the systemic and local effects of F13640 were prevented by prior (±)WAY100635 administration.

CONCLUSIONS: These results indicate that, upon systemic administration, F13640 activates both 5-HT1A autoreceptors and postsynaptic 5-HT1A receptors in prefrontal cortex with a similar potency. Both activities are likely involved in the analgesic properties of the compound.

Promising pipeline

Neurolixis Inc. has in-licensed early-stage clinical assets (Phase 1 and Phase 2) for repurposing in indications with unmet needs in psychiatric and neurological disorders. Read more...


Neurolixis has been awarded several research grants by private foundations, including Parkinson's UK, the Michael J. Fox Foundation for Parkinson's Research, the Rett Syndrome Research Trust and the International Rett Syndrome FoundationRead more...

Therapeutic focus

Neurolixis is developing clinical phase drugs targeting dyskinesia in Parkinson's disease and breathing deficits in Rett syndrome, a devastating orphan disorder. Read more...